Principal Component Analysis

(CS498



Today’s lecture

- Adaptive Feature Extraction

« Principal Component Analysis
- How, why, when, which
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A dual goal

- Find a good representation
— The features part

- Reduce redundancy in the data
— A side effect of “proper” features
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Example case

. Describe this input




What about now?
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A “good feature”

. “Simplify” the explanation of the input
— Represent repeating patterns
— When defined makes the input simpler

- How do we define these abstract qualities?
— On to the math ...
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Linear features

samples —

Z

features —

features —
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Weight Matrix

dimensions —

Feature Matrix

WX

dimensions —

samples —

Input Matrix
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Matrix representation of data
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Scatter plot of same data




Defining a goal

. Desirable feature features
— Give “simple” weights
— Avoid feature similarity

« How do we define these? : _______________________ _______________________ _______________________ _______________________ ___________
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One way to proceed

. “Simple weights”
— Minimize relation of the two dimensions

- “Feature similarity”
— Same thing!
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One way to proceed

. “Simple weights”
— Minimize relation of the two dimensions
- Decorrelate: zz, =0

. “Feature similarity”
— Same thing!
— Decorrelate: w,w, =0
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Diagonalizing the covariance

» Covariance matrix

T T
lel Z1Z2
Cov(zl,z2): . .|/ N
Z2Z1 Z2Z2

- Diagonalizing the covariance suppresses
cross-dimensional co-activity

— if z, is high, z, won't be, etc
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Cov(z,,2,) =
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Problem definition

- Foragiveninput X
. Find a feature matrix W
. So that the weights decorrelate

(WX)(WX)T — NI = ZZ" = NI
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How do we solve this?

 Any ideas?

(WX)(WX) = NI
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Solving for diagonalization

(WX)(WX)T — NI=
= WXX'W' = NI =
- WCOV(X)WT — T




Solving for diagonalization

- Covariance matrices are positive definite

— Therefore symmetric
- have orthogonal eigenvectors and real eigenvalues

— and are factorizable by:

U'AU = A
— Where U has eigenvectors of A in its columns
— A=diag(},), where X are the eigenvalues of A
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Solving for diagonalization

- The solution is a function of the eigenvectors
U and eigenvalues A of Cov(X)

WCOV(X)WT —I=
1—1

= W = \/x ’ U’
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So what does it do?

+ Input data covariance: Cov(X)~| 42 009
0.05 1.08
. Extracted feature matrix: w~| 912 =304 1,y
—8.17 —0.03
- Weights covariance: Cov(WX) = (1) (1)
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Another solution

- This is not the only solution to the problem
. Consider this one: (WX)(WX)T — NI =
WXX'W? = NI =
W = (XX" )

~1/2
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Another solution

- This is not the only solution to the problem

. Consider this one: (WX)(WX)T — NI =
WXX"WT = NI =

. Similar but W — (XXT)‘W N
out of scope

W = US 2v7
for now

U8, V]| = SVD(XX"
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Decorrelation in pictures

- An implicit Gaussian assumption
— N-D data has N directions of variance

Input Data

%
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Undoing the variance

- The decorrelating matrix W contains two
vectors that normalize the input’s variance

Input Data

A
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Resulting transform

. Input gets scaled to a well behaved Gaussian
with unit variance in all dimensions

Transformed Data (feature weights)

3..
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A more complex case

- Having correlation between two dimensions
— We still find the directions of maximal variance
— But we also rotate in addition to scaling

Input Data Transformed Data (feature weights)
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One more detail

. So far we considered zero-mean inputs
— The transforming operation was a rotation

. If the input mean is not zero bad things happen!
— Make sure that your data is zero-mean!

Input Data Transformed Data (feature weights)
T T - 8
0 F i ......................... 7 N
B 1 T O SO PPN ........................ S SOOI . SO
10 5 0 5 10 ® 5 0 5
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Principal Component Analysis

« This transform is known as PCA

— The features are the principal components
- They are orthogonal to each other
- And produce orthogonal (white) weights

— Major tool in statistics

- Removes dependencies from multivariate data

« Also known as the KLT
— Karhunen-Loeve transform
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A

better way to compute PCA

 The Singular Value Decomposition way

« Re

U,S,V|=SVD(A) = A = USV’

ationship to eigendecomposition
n our case (covariance input A), U and S will

hold the eigenvectors/values of A

« Why the SVD?

— More stable, more robust, fancy extensions
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PCA through the SVD

T features —» T samples — samples —
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Dimensionality reduction

- PCA s great for high dimensional data

- Allows us to perform dimensionality reduction
— Helps us find relevant structure in data
— Helps us throw away things that won't matter
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A simple example

- Two very correlated dimensions
— e.g. size and weight of fruit

— One effective variable

 PCA matrix here is:

w| —02 —013

—13.7  28.2

— Large variance between the two components
. about two orders of magnitude
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A simple example

. Second principal component needs to
be super-boosted to whiten the weights

— maybe is it useless?

 Keep only high variance

— Throw away components = =+ 5 & o & i
with minor contributions l

0.5 froedormns S S T T S i
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What is the number of dimensions?

- If the input was M dimensional, how many
dimensions do we keep?

— No solid answer (estimators exist but are flaky)

. Look at the singular/eigen-values

— They will show the variance of each
component, at some point it will be small
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Example

- Eigenvalues of 1200 dimensional video data
— Little variance after component 30
— We don’t need to keep the rest of the data
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So where are the features?

- We strayed off-subject
— What happened to the features?

— We only mentioned that they are orthogonal

« We talked a

tal

K about t

They shou

oout the weights so far, let's
ne principal components

d encapsulate structure

— How do they look like?
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Face analysis

Analysis of a face database
— What are good features for faces?

iy
b

. Is there anything special there?
— What will PCA give us?
— Any extra insight?

« Lets use MATLAB to find out ...
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The Eigenfaces
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Low-rank model

- Instead of using 780 pixel values we use
the PCA welghts (here 50 and 5)

Full Approximatio

-985.953 732 591 655.408 229 737 -227.179

Dominant eigenfac




PCA for large dimensionalities

- Sometimes the data is high dim
— e.g. videos 1280x720xT =921,600D x T frames

» You will not do an SVD that big!
— Complexity is O(4m?n + 8mn? + 9n3)

. Useful approach is the EM-PCA
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EM-PCA in a nutshell

. Alternate between successive approximations
— Start with random C and loop over:
Z=C'X
C=XZ"
— After convergence C spans the PCA space

. If we choose a low rank C then computations
are significantly more efficient than the SVD

— More later when we cover EM
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PCA for online data

- Sometimes we have too many data samples
— Irrespective of the dimensionality
— e.g.long video recordings

. Incremental SVD algorithms

— Update the U,S,V matrices with only a small set
or a single sample point

— Very efficient updates
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A Video Example

- The movieis a series of frames
— Each frame is a data point
— 126, 80x60 pixel frames
— Data will be 4800x126
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PCA Results

Video Component 1

Video Component 2 Video Component 3

Component

Time
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PCA for online data |l

“Neural net” algorithms

Naturally online approaches
— With each new datum, PC’s are updated

Oja’s and Sanger’s rules
— Gradient algorithms that update W

Great when you have minimal resources
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PCA and the Fourier transform

- We've seen why sinusoids are important
— But can we statistically justify it?

- PCA has a deep connection with the DFT
— In fact you can derive the DFT from PCA
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An example

« Let’s take a time series which is not “white”

— Each sample is somewhat correlated with the
previous one (Markov process)

[x(t), cee ZL’(t—I—T)]

« We'll make it multidimensional

(1) z(t+1)

| x(t—i—N) x(t—l—i—l—N)
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An example

- In this context, features will be repeating
temporal patterns smaller than N

(1) o(t+1)

| a:(t—;—N) a:(t—l—i—FN)

. If W is the Fourier matrix then we are
performing a frequency analysis
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PCA on the time series

- By definition there is a correlation between
successive samples

1 1—-e - 0

Cov(X)m| 176 1 1-e L
o : 1—e 1 l1—e i

0 e 1—e 1

- Resulting covariance matrix will be symmetric
Toeplitz with a diagonal tapering towards 0

L LLINOIS

NNNNNNNNNNNNNNNNNNNNNNNNNNN -CHAMPAIGN




Solving for PCA

- The eigenvectors of Toeplitz matrices like
this one are (approximately) sinusoids

N = — b
QOWONOURAWN=-0OONOOOHAWN =
L .

NDNNNDN N
OO WN =
L L

N
<

WWN N
— O © ©
L

W
N
T
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And ditto with images

- Analysis of coherent images results in 2D
sinusoids
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So now you know

« The Fourier transform is an “optimal”
decomposition for time series

— In fact you will often not do PCA and do a DFT

« Thereis also a loose connection with our
perceptual system

— We kind of use similar filters in our ears and
eyes (but we'll make that connection later)
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Recap

» Principal Component Analysis
— Get used to it!

— Decorrelates multivariate data, finds useful
components, reduces dimensionality

- Many ways to getto it
— Knowing what to use with your data helps

- Interesting connection to Fourier transform
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Check these out for more

- Eigenfaces
— http://en.wikipedia.org/wiki/Eigenface
- http://www.cs.ucsb.edu/~mturk/Papers/mturk-CVPR91.pdf
— http://www.cs.ucsb.edu/~mturk/Papers/jcn.pdf

« Incremental SVD
— http://www.merl.com/publications/TR2002-024/

- EM-PCA

— http://cs.nyu.edu/~roweis/papers/empca.ps.gz
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