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Today’s lecture 

•  Adaptive Feature Extraction 

•  Principal Component Analysis 
– How, why, when, which 



A dual goal 

•  Find a good representation 
–  The features part 

•  Reduce redundancy in the data 
– A side effect of “proper” features 



Example case 

•  Describe this input 



What about now? 



A “good feature” 

•  “Simplify” the explanation of the input 
–  Represent repeating patterns 
– When defined makes the input simpler 

•  How do we define these abstract qualities? 
– On to the math … 



Linear features 
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A 2D case 
Matrix representation of data 

Scatter plot of same data 
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Defining a goal 

•  Desirable feature features 
– Give “simple” weights 
– Avoid feature similarity 

•  How do we define these? 
 



One way to proceed 

•  “Simple weights” 
– Minimize relation of the two dimensions 

•  “Feature similarity” 
–  Same thing! 



One way to proceed 

•  “Simple weights” 
– Minimize relation of the two dimensions 
– Decorrelate: 

•  “Feature similarity” 
–  Same thing! 
– Decorrelate: 

zT1z2 = 0

wT
1w2 = 0



Diagonalizing the covariance 

•  Covariance matrix 
 

•  Diagonalizing the covariance suppresses 
cross-dimensional co-activity 
–  if z1 is high, z2 won’t be, etc 
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Problem definition 

•  For a given input  

•  Find a feature matrix 

•  So that the weights decorrelate 

WX( ) WX( )T = N I⇒ ZZT = N I

W

X



How do we solve this? 

•  Any ideas? 

WX( ) WX( )T = N I



Solving for diagonalization 

WX( ) WX( )T = N I⇒
⇒WXXTWT = N I⇒
⇒WCov X( )WT = I



Solving for diagonalization 

•  Covariance matrices are positive definite 
–  Therefore symmetric 

•  have orthogonal eigenvectors and real eigenvalues 

–  and are factorizable by: 

– Where U has eigenvectors of A in its columns 
– Λ=diag(λi), where λi are the eigenvalues of A 

UTAU = Λ



Solving for diagonalization 

•  The solution is a function of the eigenvectors 
U and eigenvalues Λ of Cov(X) 
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So what does it do? 

•  Input data covariance: 

 

•  Extracted feature matrix: 

•  Weights covariance: 
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Another solution 

•  This is not the only solution to the problem 
•  Consider this one: WX( ) WX( )T = N I⇒

WXXTWT = N I⇒
W = XXT( )−1/2



Another solution 

•  This is not the only solution to the problem 
•  Consider this one: 

•  Similar but                                                          
out of scope                                                         
for now 

WX( ) WX( )T = N I⇒
WXXTWT = N I⇒
W = XXT( )−1/2 ⇒
W = US−1/2VT

[U,S,V]= SVD XXT( )



Decorrelation in pictures 

•  An implicit Gaussian assumption 
– N-D data has N directions of variance 

Input Data 



Undoing the variance 

•  The decorrelating matrix W contains two 
vectors that normalize the input’s variance  

Input Data 



Resulting transform 

•  Input gets scaled to a well behaved Gaussian 
with unit variance in all dimensions 

Transformed Data (feature weights) Input Data 



A more complex case 

•  Having correlation between two dimensions 
– We still find the directions of maximal variance 
–  But we also rotate in addition to scaling 

Transformed Data (feature weights) Input Data 



One more detail 

•  So far we considered zero-mean inputs 
–  The transforming operation was a rotation 

•  If the input mean is not zero bad things happen! 
–  Make sure that your data is zero-mean! 

Transformed Data (feature weights) Input Data 



Principal Component Analysis 

•  This transform is known as PCA 
–  The features are the principal components 

•  They are orthogonal to each other 
•  And produce orthogonal (white) weights 

– Major tool in statistics 
•  Removes dependencies from multivariate data 

•  Also known as the KLT 
–  Karhunen-Loeve transform 



A better way to compute PCA 

•  The Singular Value Decomposition way 
 

•  Relationship to eigendecomposition 
–  In our case (covariance input A), U and S will 

hold the eigenvectors/values of A 

•  Why the SVD? 
– More stable, more robust, fancy extensions 

[U,S,V]= SVD(A)⇒ A = USVT



PCA through the SVD 
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Dimensionality reduction 

•  PCA is great for high dimensional  data 

•  Allows us to perform dimensionality reduction 
– Helps us find relevant structure in data 
– Helps us throw away things that won’t matter 



A simple example 

•  Two very correlated dimensions 
–  e.g. size and weight of fruit 
– One effective variable 

•  PCA matrix here is: 

–  Large variance between the two components 
•  about two orders of magnitude 
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A simple example 

•  Second principal component needs to 
be super-boosted to whiten the weights 
– maybe is it useless? 

•  Keep only high variance 
–  Throw away components                                

with minor contributions 



What is the number of dimensions? 

•  If the input was M dimensional, how many 
dimensions do we keep? 
– No solid answer (estimators exist but are flaky) 

•  Look at the singular/eigen-values 
–  They will show the variance of each 

component, at some point it will be small 



Example 

•  Eigenvalues of 1200 dimensional video data 
–  Little variance after component 30 
– We don’t need to keep the rest of the data 
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So where are the features? 

•  We strayed off-subject 
– What happened to the features? 
– We only mentioned that they are orthogonal 

•  We talked about the weights so far, let’s 
talk about the principal components 
–  They should encapsulate structure 
– How do they look like? 



Face analysis 

•  Analysis of a face database 
–  What are good features for faces? 

•  Is there anything special there? 
–  What will PCA give us? 
–  Any extra insight? 

•  Lets use MATLAB to find out … 



The Eigenfaces 



Low-rank model 

•  Instead of using 780 pixel values we use 
the PCA weights (here 50 and 5) 
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PCA for large dimensionalities 

•  Sometimes the data is high dim 
–  e.g. videos 1280x720xT = 921,600D x T frames 

•  You will not do an SVD that big! 
– Complexity is O(4m2n + 8mn2 + 9n3) 

•  Useful approach is the EM-PCA 



EM-PCA in a nutshell 

•  Alternate between successive approximations 
–  Start with random C and loop over: 

– After convergence C spans the PCA space 

•  If we choose a low rank C then computations 
are significantly more efficient than the SVD 
– More later when we cover EM 

Z = C+X
C = XZ+



PCA for online data 

•  Sometimes we have too many data samples 
–  Irrespective of the dimensionality 
–  e.g. long video recordings 
–    

•  Incremental SVD algorithms 
– Update the U,S,V matrices with only a small set 

or a single sample point 
– Very efficient updates 



A Video Example 

•  The movie is a series of frames 
–  Each frame is a data point 
–  126, 80x60 pixel frames 
–  Data will be 4800x126 

•  We can do PCA on that 



PCA Results 



PCA for online data II 

•  “Neural net” algorithms 

•  Naturally online approaches 
– With each new datum, PC’s are updated 

•  Oja’s and Sanger’s rules 
– Gradient algorithms that update W 

•  Great when you have minimal resources 



PCA and the Fourier transform 

•  We’ve seen why sinusoids are important 
–  But can we statistically justify it? 

•  PCA has a deep connection with the DFT 
–  In fact you can derive the DFT from PCA 



An example 

•  Let’s take a time series which is not “white” 
–  Each sample is somewhat correlated with the 

previous one (Markov process) 

•  We’ll make it multidimensional 
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An example 

•  In this context, features will be repeating 
temporal patterns smaller than N 

•  If W is the Fourier matrix then we are 
performing a frequency analysis 
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PCA on the time series 

•  By definition there is a correlation between 
successive samples 

•  Resulting covariance matrix will be symmetric 
Toeplitz with a diagonal tapering towards 0 
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Solving for PCA 

•  The eigenvectors of Toeplitz matrices like 
this one are (approximately) sinusoids 
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And ditto with images 

•  Analysis of coherent images results in 2D 
sinusoids 



So now you know 

•  The Fourier transform is an “optimal” 
decomposition for time series 
–  In fact you will often not do PCA and do a DFT 

•  There is also a loose connection with our 
perceptual system 
– We kind of use similar filters in our ears and 

eyes (but we’ll make that connection later) 



Recap 

•  Principal Component Analysis 
– Get used to it! 
– Decorrelates multivariate data, finds useful 

components, reduces dimensionality 

•  Many ways to get to it 
–  Knowing what to use with your data helps 

•  Interesting connection to Fourier transform 



Check these out for more 

•  Eigenfaces 
–  http://en.wikipedia.org/wiki/Eigenface 
–  http://www.cs.ucsb.edu/~mturk/Papers/mturk-CVPR91.pdf 
–  http://www.cs.ucsb.edu/~mturk/Papers/jcn.pdf 

•  Incremental SVD 
–  http://www.merl.com/publications/TR2002-024/ 

•  EM-PCA 
–  http://cs.nyu.edu/~roweis/papers/empca.ps.gz 


