
Principal Component Analysis

CS498

Today’s lecture

•  Adaptive Feature Extraction

•  Principal Component Analysis
– How, why, when, which

A dual goal

•  Find a good representation
–  The features part

•  Reduce redundancy in the data
– A side effect of “proper” features

Example case

•  Describe this input

What about now?

A “good feature”

•  “Simplify” the explanation of the input
–  Represent repeating patterns
– When defined makes the input simpler

•  How do we define these abstract qualities?
– On to the math …

Linear features

Z =WX

=

samples ⟶ samples ⟶

fe
at

ur
es

 ⟶

di
m

en
si

on
s
⟶

fe
at

ur
es

 ⟶
 dimensions ⟶

Feature Matrix Input Matrix Weight Matrix

A 2D case
Matrix representation of data

Scatter plot of same data

Z =WX =

=
zT1
zT2

⎡

⎣

⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥⎥
=

wT
1

wT
2

⎡

⎣

⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥⎥

xT1
xT2

⎡

⎣

⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥⎥

x1

x2

x1

x2

…

Defining a goal

•  Desirable feature features
– Give “simple” weights
– Avoid feature similarity

•  How do we define these?

One way to proceed

•  “Simple weights”
– Minimize relation of the two dimensions

•  “Feature similarity”
–  Same thing!

One way to proceed

•  “Simple weights”
– Minimize relation of the two dimensions
– Decorrelate:

•  “Feature similarity”
–  Same thing!
– Decorrelate:

zT1z2 = 0

wT
1w2 = 0

Diagonalizing the covariance

•  Covariance matrix

•  Diagonalizing the covariance suppresses
cross-dimensional co-activity
–  if z1 is high, z2 won’t be, etc

Cov z1,z2() = zT1z1 zT1z2
zT2z1 zT2z2

⎡

⎣

⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥⎥
/N

Cov z1,z2() = zT1z1 zT1z2
zT2z1 zT2z2

⎡

⎣

⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥⎥
/N = 1 0

0 1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ = I

Problem definition

•  For a given input

•  Find a feature matrix

•  So that the weights decorrelate

WX() WX()T = N I⇒ ZZT = N I

W

X

How do we solve this?

•  Any ideas?

WX() WX()T = N I

Solving for diagonalization

WX() WX()T = N I⇒
⇒WXXTWT = N I⇒
⇒WCov X()WT = I

Solving for diagonalization

•  Covariance matrices are positive definite
–  Therefore symmetric

•  have orthogonal eigenvectors and real eigenvalues

–  and are factorizable by:

– Where U has eigenvectors of A in its columns
– Λ=diag(λi), where λi are the eigenvalues of A

UTAU = Λ

Solving for diagonalization

•  The solution is a function of the eigenvectors
U and eigenvalues Λ of Cov(X)

WCov X()WT = I⇒

⇒W =
λ1 0

0 λ2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−1

UT

So what does it do?

•  Input data covariance:

•  Extracted feature matrix:

•  Weights covariance:

Cov X()≈ 14.9 0.05
0.05 1.08
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Cov(WX)= 1 0
0 1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

W ≈ 0.12 −30.4
−8.17 −0.03
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ /N

Another solution

•  This is not the only solution to the problem
•  Consider this one: WX() WX()T = N I⇒

WXXTWT = N I⇒
W = XXT()−1/2

Another solution

•  This is not the only solution to the problem
•  Consider this one:

•  Similar but
out of scope
for now

WX() WX()T = N I⇒
WXXTWT = N I⇒
W = XXT()−1/2 ⇒
W = US−1/2VT

[U,S,V]= SVD XXT()

Decorrelation in pictures

•  An implicit Gaussian assumption
– N-D data has N directions of variance

Input Data

Undoing the variance

•  The decorrelating matrix W contains two
vectors that normalize the input’s variance

Input Data

Resulting transform

•  Input gets scaled to a well behaved Gaussian
with unit variance in all dimensions

Transformed Data (feature weights) Input Data

A more complex case

•  Having correlation between two dimensions
– We still find the directions of maximal variance
–  But we also rotate in addition to scaling

Transformed Data (feature weights) Input Data

One more detail

•  So far we considered zero-mean inputs
–  The transforming operation was a rotation

•  If the input mean is not zero bad things happen!
–  Make sure that your data is zero-mean!

Transformed Data (feature weights) Input Data

Principal Component Analysis

•  This transform is known as PCA
–  The features are the principal components

•  They are orthogonal to each other
•  And produce orthogonal (white) weights

– Major tool in statistics
•  Removes dependencies from multivariate data

•  Also known as the KLT
–  Karhunen-Loeve transform

A better way to compute PCA

•  The Singular Value Decomposition way

•  Relationship to eigendecomposition
–  In our case (covariance input A), U and S will

hold the eigenvectors/values of A

•  Why the SVD?
– More stable, more robust, fancy extensions

[U,S,V]= SVD(A)⇒ A = USVT

PCA through the SVD

= SVD

samples ⟶ samples ⟶

sa
m

pl
es

 ⟶

di
m

en
si

on
s
⟶

features ⟶

di
m

en
si

on
s
⟶

Feature Matrix Input Matrix

Weight Matrix

√eigenvalue matrix

= SVD

dimensions⟶
features ⟶

fe
at

ur
es

 ⟶

di
m

en
si

on
s
⟶

samples ⟶

di
m

en
si

on
s
⟶

Feature Matrix
Input Covariance

Weight Matrix Eigenvalue matrix

fe
at

ur
es

 ⟶

fe
at

ur
es

 ⟶

features ⟶ features ⟶

Dimensionality reduction

•  PCA is great for high dimensional data

•  Allows us to perform dimensionality reduction
– Helps us find relevant structure in data
– Helps us throw away things that won’t matter

A simple example

•  Two very correlated dimensions
–  e.g. size and weight of fruit
– One effective variable

•  PCA matrix here is:

–  Large variance between the two components
•  about two orders of magnitude

W = −0.2 −0.13
−13.7 28.2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

A simple example

•  Second principal component needs to
be super-boosted to whiten the weights
– maybe is it useless?

•  Keep only high variance
–  Throw away components

with minor contributions

What is the number of dimensions?

•  If the input was M dimensional, how many
dimensions do we keep?
– No solid answer (estimators exist but are flaky)

•  Look at the singular/eigen-values
–  They will show the variance of each

component, at some point it will be small

Example

•  Eigenvalues of 1200 dimensional video data
–  Little variance after component 30
– We don’t need to keep the rest of the data

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5
x 105

…

So where are the features?

•  We strayed off-subject
– What happened to the features?
– We only mentioned that they are orthogonal

•  We talked about the weights so far, let’s
talk about the principal components
–  They should encapsulate structure
– How do they look like?

Face analysis

•  Analysis of a face database
–  What are good features for faces?

•  Is there anything special there?
–  What will PCA give us?
–  Any extra insight?

•  Lets use MATLAB to find out …

The Eigenfaces

Low-rank model

•  Instead of using 780 pixel values we use
the PCA weights (here 50 and 5)

Input Full Approximation Mean Face

−985.953

1

D
om

in
an

t e
ig

en
fa

ce
s

1

C
um

ul
at

iv
e

ap
pr

ox

732.591

2

2

655.408

3

3

229.737

4

4

−227.179

5

5

PCA for large dimensionalities

•  Sometimes the data is high dim
–  e.g. videos 1280x720xT = 921,600D x T frames

•  You will not do an SVD that big!
– Complexity is O(4m2n + 8mn2 + 9n3)

•  Useful approach is the EM-PCA

EM-PCA in a nutshell

•  Alternate between successive approximations
–  Start with random C and loop over:

– After convergence C spans the PCA space

•  If we choose a low rank C then computations
are significantly more efficient than the SVD
– More later when we cover EM

Z = C+X
C = XZ+

PCA for online data

•  Sometimes we have too many data samples
–  Irrespective of the dimensionality
–  e.g. long video recordings
– 

•  Incremental SVD algorithms
– Update the U,S,V matrices with only a small set

or a single sample point
– Very efficient updates

A Video Example

•  The movie is a series of frames
–  Each frame is a data point
–  126, 80x60 pixel frames
–  Data will be 4800x126

•  We can do PCA on that

PCA Results

PCA for online data II

•  “Neural net” algorithms

•  Naturally online approaches
– With each new datum, PC’s are updated

•  Oja’s and Sanger’s rules
– Gradient algorithms that update W

•  Great when you have minimal resources

PCA and the Fourier transform

•  We’ve seen why sinusoids are important
–  But can we statistically justify it?

•  PCA has a deep connection with the DFT
–  In fact you can derive the DFT from PCA

An example

•  Let’s take a time series which is not “white”
–  Each sample is somewhat correlated with the

previous one (Markov process)

•  We’ll make it multidimensional

x(t), , x(t +T)⎡
⎣⎢

⎤
⎦⎥

X =
x(t) x(t + 1)
  

x(t +N) x(t + 1+N)

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

An example

•  In this context, features will be repeating
temporal patterns smaller than N

•  If W is the Fourier matrix then we are
performing a frequency analysis

Z =W
x(t) x(t + 1)
  

x(t +N) x(t + 1+N)

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

PCA on the time series

•  By definition there is a correlation between
successive samples

•  Resulting covariance matrix will be symmetric
Toeplitz with a diagonal tapering towards 0

Cov X()≈
1 1−e  0

1−e 1 1−e 
 1−e 1 1−e
0  1−e 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

Solving for PCA

•  The eigenvectors of Toeplitz matrices like
this one are (approximately) sinusoids

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

And ditto with images

•  Analysis of coherent images results in 2D
sinusoids

So now you know

•  The Fourier transform is an “optimal”
decomposition for time series
–  In fact you will often not do PCA and do a DFT

•  There is also a loose connection with our
perceptual system
– We kind of use similar filters in our ears and

eyes (but we’ll make that connection later)

Recap

•  Principal Component Analysis
– Get used to it!
– Decorrelates multivariate data, finds useful

components, reduces dimensionality

•  Many ways to get to it
–  Knowing what to use with your data helps

•  Interesting connection to Fourier transform

Check these out for more

•  Eigenfaces
–  http://en.wikipedia.org/wiki/Eigenface
–  http://www.cs.ucsb.edu/~mturk/Papers/mturk-CVPR91.pdf
–  http://www.cs.ucsb.edu/~mturk/Papers/jcn.pdf

•  Incremental SVD
–  http://www.merl.com/publications/TR2002-024/

•  EM-PCA
–  http://cs.nyu.edu/~roweis/papers/empca.ps.gz

